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ABSTRACT

Wirelesssensornetworksfor environmentalmonitoringhave
unusualcharacteristicsand must meeta uniqueset of re-
quirements.Dataratesareextremelylow, but limits on en-
ergy usageandtotal deploymentcostdominate. Probably
themostimportantmetric is theaverageenergy requiredto
deliverabit of informationaboutthesensedenvironmentto
thedestination.Thesenetworksalsodiffer from thegeneral
caseof ad-hocwirelessnets in that connectivity between
two arbitrary nodesis not required,nor even desired;all
that is neededis connectivity from eachsensorto a gate-
way or “home” node.This paperdescribesa methodology
for sourcecodingof environmentalsensornetwork datathat
exploits correlationin temporalandspatialdomains. Our
approachis anadaptive two-level scheme.Thefirst level is
model-basedin thatthetimeseriesfrom asensoris approxi-
matedbyapolynomialfunction.Themetricfor thisapprox-
imationis theminimumnumberof bitsrequiredto represent
the approximationerror for the worst-casedatapoint. The
secondlevel exploits spatialcorrelationby allowing nodes
alongpathsfrom moredistantnodesto adoptmodelparam-
etersfrom farther-flung nodes,calledcodeservers,to fur-
therreduceredundancy.

1. INTRODUCTION

The widespreaddeployment of large collectionsof wire-
lesslynetworked intelligent devicesmay be the next tech-
nology boom. Oneexampleof thesesystemsthat hasre-
ceivedincreasingattentionis wirelesssensornetworks. To
besuccessful,thedesignof wirelesssensornetworksmust
carefully orchestratea numberof technologiespreviously
viewed as distinct, including wirelesscommunication,ad
hoc networking, and deeplyembeddedreal-timecomput-
ing systems.Driving interestin this areaarea numberof
compellingproblems:distributedsurveillanceandtracking,
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monitoringof building and transportationsystems,hazard
warning,andenvironmentalsensing.

The particularapplicationthat we are targeting is the
minimally-invasive monitoring of microclimatevariables,
suchas temperature,humidity and insolation(light inten-
sity). We areconstructingbothanarchitectureanda proof-
of-conceptimplementationin collaborationwith aplantphys-
iologist anda communityecologist.Our overall goal is to
provide an order-of-magnitudeincreasein spatio-temporal
samplingperformanceovertraditionalnon-networkedsens-
ing technologies,enablingsignificantimprovementsin mod-
els that will ultimately forecastecosystemdynamics. Our
primaryobjectivesare(i) to demonstratetheutility andef-
ficiency of wirelesssensornetworks for scientificdataac-
quisition in supportof microclimate-relatedecologicaland
biologicalresearch,and(ii) to developalgorithmsandtech-
niquesthat canenablethe widespreadapplicationof wire-
lesssensornetworking to this,aswell asother, problems.

2. WISARDNET ARCHITECTURE

In this study, thebenchmarksensortechnologythatwe are
usingis standalonedataloggerunits that have a low initial
cost but requirewired in situ datauploadsthat are inva-
siveandlabor-intensive. (Anotherexistingsolutionis wired
arraysof sensorswhich have even greaterenvironmental
impactandscalepoorly.) Our wirelesssensornetwork is
composedof low-cost integratedsensingandcommunica-
tion nodescalledWISARDs (WirelessSensingandRelay
Devices) [1]. They shareseveral featureswith the Berke-
ley motes[2, 3], includingtheuseof anenergy-saving 8-bit
programmablemicrocontroller, andcommunicationin the
902-928MHz ISM band.Our unitsconsistof a two-board
stackof a processor/analogmodule(“brains” board)anda
radiomodule.

Our WISARD brainsboardis built arounda Microchip
PIC16LF877microcontrollerclockedat 10 MHz, to which
we have interfacedexternal memory. Our boardscan be
populatedwith a differentcomplementof chipsdepending
on the application. For the sensorconfiguration,we in-



stall 128Kbof SRAM with a multiplexedaddress/databus
to conserve I/O pins. For the gateway (or network con-
troller) configuration,we install 16Mb of FLASH mem-
ory to supportbuffering and interfacesto long-haullinks.
The PIC16LF877processoralso has a self-writable pro-
gramstorethatenablesreconfigurabilitywithoutanexternal
auxiliaryprocessorasusedin [2].

We have integratedbothdedicatedandgeneral-purpose
analoganddigital interfacehardwareon our brainsboard
for a varietyof sensors.For theproof-of-conceptnetwork,
we supporttwo temperatureandtwo photodiode-basedin-
solation (light intensity) sensors. Our sensorshave been
designedin closecollaborationwith our scientistpartners:
for example,we have designedthermocouplesfor temper-
aturemonitoringthat includelow-costanalogcircuitry for
real-timecold-junctioncalibration.Unlikethermistor-based
sensorsasusedin [3], thermocoupleshave a minimum of
massandresultantthermalinertia.This technologyis well-
suitedfor themicro-metapplication,sinceit will beableto
track transientsthatmaybea driver for behavior of a vari-
etyof species.In addition,oursensorsaredeployedoutside
theWISARD package,eliminatingtemporalartifacts(such
aslimitations on transientresponse)that could resultfrom
internalmounting.Thebrainsboardalsosupportsothersen-
sorsvia a general-purposeanaloginput, a switchedpower
source,andthe1-Wire bus.

TheWISARD radioboardusesa single-chipRF trans-
ceiver (TexasInstrumentsTRF9600A)with anFSK modu-
lator, andanRFamplifierwith user-controlledoutputpower.
It alsohasan integratedsynthesizerproviding 230Hz fre-
quency resolutionthatenablesslow frequency hopping.Be-
causetheradiochipprovidesonlydownconversionandquad-
ratureFM pre-detection(essentiallya frequency detector),
weperformreal-timesampling,messagedetection,frame/bit
timing acquisition,and noncoherentdetectionusing soft-
wareresidentin themicrocontroller.

A majorfocusof oureffort hasbeenthestudyof energy-
conservingMAC protocolsfor this application. Our ap-
proach[4] is basedon cross-layerinteractionaspartof the
design.We exploit routinginformationto enabletheestab-
lishmentof one-hopcliquesof nodeswhoagreeonpseudo-
randommeetingtimes.Thisenablesextremelyhighenergy
efficiency: a nodeawakensfor communication(andhence
consumesenergy)duringagivenslotonly if it is timefor the
cliqueto meet.We alsoexploit thecapabilitiesof our PHY
layer, allowing cliquesto usepseudo-randomizedfrequency
hoppingpatterns,thusmitigating multiple-accessinterfer-
enceaswell asfrequency selectivity andexternal interfer-
ence.

In general,the energy cost of a single instruction of
computationis ordersof magnitudelower thanthe costof
transmittingandreceiving abit of information:in ourhard-
wareimplementation,thesefiguresare(on average)2.6 nJ

andasmuchas170 � J, a communicationvs. computation
energy costratioof over �������	� . Hence,relativeto commu-
nication,computationalcostsarealmostnegligible, mean-
ing that theminimizationof total energy costis essentially
tantamounttominimizingcommunicationcostonly. Forex-
ample,weareusingajoint bit detection/synchronizational-
gorithmthatperformswithin 1 dB of maximum-likelihood
detection.

At theoutsetof thisproject,wearguedthatanintegrated
designapproachat the circuit, system,andnetwork levels
of abstractionwasrequired[1]. In that spirit, our work at
the PHY layer builds on the extremely maturediscipline
of communicationtheoryto minimize the energy required
to successfullytransfera bit of information. At the MAC
layer, our designensuresthat nodes’ radiosare activated
only whennecessarywith very high probability. We now
turnto thetaskof minimizingthenumberof bitsrequiredto
reconstructat a destinationnodethe informationacquired
by a networkedarrayof sensors.

3. RELATED WORK

Researchin distributedsourcecodinghasre-awakenedin
the last few years,motivatedby two factors: the wireless
sensornetwork applicationandthecelebratedSlepian-Wolf
existencetheorem[5] for powerful distributedsourcecod-
ing. The Slepian-Wolf result shows that it is (asymptoti-
cally) possibleto encodetwo sources
 and � with joint
entropy ��
�
������ in suchawaythat � needsto send��
����
bits and 
 needsto send��
�
�� ��� bits,evenif 
 doesnot
know � for thepurposesof coding.

The work of Ramchandranand colleagues[6] tackles
theproblemvia a framework basedon channelcoding.The
essentialideais thedesignof groupcodeswith acosetstruc-
turethattakesadvantageof alimitedamountof prior knowl-
edgeaboutthe correlationbetweenthe datastreams.Ser-
vetto [7] considerslattice codesin the context of a spatial
“division-of-labor” model in which a network of routing
nodesconnectsanarrayof sensornodesto anarrayof des-
tinationnodes.In this model,collaborationbetweensensor
nodesof any kind, andcollaborationbetweenroutingnodes
with respectto coding,is forbidden.

As in [7], weconsidersamplingaspatio-temporallydy-
namicalsystemin thispaper. However, all of ournodescan
sense,transmit,andreceive, andthegoal is to forward the
sensedinformationaboutthesystemto a commongateway
nodefor uploading(mostlikely oversatelliteor cellularter-
restrialinfrastructure)to theultimateuser, e.g.,aninternet-
enableddatabase. The pooling of informationat interme-
diatenodesforbiddenin [7] is exploited in our scheme:a
nodethat both sensesandroutesexplicitly determinesthe
similarity betweenits dataanddatafrom nodeswhosedata
it forwards.Theuseof this knowledgecomesat very little



cost: asshown earlier, the energy cost ratio of communi-
cationvs. computationis enormous,andtheadditionalde-
lay may be small relative to the temporaldynamicsof the
senseddata.Indeed,while wehavenoproof,weconjecture
thatexploiting known “side” informationcanyield benefits
in termsof thecomplexity of thespatio-temporalcodingal-
gorithmateachnode.

A critical aspectof sourcecodingfor sensornetworksis
thetrade-off betweendelayandtheeffectivenessof coding.
In our targetapplication,wecanexpecton theorderof 10’s
of readingswithin an interval of 1-3 hours. Our investiga-
tionshave shown that,whetherthealgorithmis adaptiveor
not,theratioof alphabetsize(i.e.,thenumberdistinctquan-
tizedsensorvalues),to thefile sizeis largeenoughto render
naiveapproaches(e.g.,Huffmanor dictionary-basedcodes)
ineffective. In this application,short sequencesare com-
mon,andasymptoticallyoptimumapproachescanfalteras
a result.

In any sensornetwherethesensedinformationmustbe
forwardedto amuchsmallernumberof gateways,it is well-
known thatnodescloserto thegatewaysaremorevulnera-
ble to energy depletionduethethehigherinformationrates
they musthandle[8, 9]. For example,in a linear arrayof
sensorswith onegateway and without sourcecoding, the
amountof traffic eachnodemusthandleincreaseslinearly
(in thenumberof nodes)with proximity to thegateway. The
objective of this work is to definea pragmaticstrategy for
network-awaresourcecodingthat cansignificantlyreduce
this, takingadvantageof thespatio-temporalcorrelationof
the senseddatato improve energy efficiency andnetwork
lifetime.

4. THE ALGORITHM

In our application,transmissionsfrom the gateway to the
internetwill typically occurat a lower rate than the sam-
pling ateachsensornode.A typicalscenariowould involve
samplingthe environmentalvariablesevery 5 minutesand
uploadingto the internetevery houror two. However, this
canvary: in our testdata,weconsidersoil temperaturetime
series5 cmbelow thesurface,whichnormallyhaveaband-
width of no morethan ����������� Hz.

Our algorithmis model-basedin thatwe explicitly rec-
ognizethetemporalcorrelationataparticularlocation.While
thiscorrelationcouldbemodeledusingahigh-orderMarkov
chain,our modelis not basedon a prior probability distri-
bution, but ratherthe dynamicsof the process.It is adap-
tive at the secondlevel, sincenodestest the similarity of
their datawith acertainsetof neighboringnodes’data,and
find thedescriptionthatminimizesthenumberof additional
bits requiredto representtheirdata.Thisper-realizationap-
proachis essentiallysample-starved: attemptsto estimate
a (probabilistic)distribution are circumventedin favor of

directly minimizing the representationusing a (hopefully
good)model[10].

Eachnodebegins by fitting a low-orderpolynomial to
its data.As we will see,thedata’s relatively low dynamics
imply thata zeroth-or first-orderpolynomialis oftensuffi-
cient.Theideahereis to capturethetrendof thedataat that
location: it canbe viewed asa form of higher-orderdelta
modulation,in which differencesare encoded. However,
herewe arelooking at a largerwindow of data,enablinga
morecompactrepresentation.

In this paper, we limit ourselves to the losslesscase.
It canbe stronglyarguedthat the measurementsaloneare
noisy andthusamenableto further, limited lossusingnet-
worked compression.However, our scientistcollaborators
would take little comfort in knowing that thewirelesscon-
nectivity that so easesthe logisticsof datacollectionalso
canresultin a lossof accuracy.

Ourcriterionfor choosingthepolynomialcoefficientsis
not theusualsumof squarederrorscriterion. In view of the
shorttimeseriesto betransmitted,weelectto encodediffer-
encesbetweenthedatapointsandthepolynomialmodelin
fixed-lengthfields,sincethealternative involvessignificant
overhead.Henceour objective in choosingthepolynomial
coefficientsis to minimizethemaximumnumberof bits re-
quiredto representdifferencesbetweenthedatapointsand
the polynomial. This is currently being implementedus-
ing an exhaustive searchinitialized usingthe least-squares
coefficients. Thefinal temporallyencodedpackageof data
consistsof the polynomialcoefficients,the field width (in
bits) of thedifferencedata,andthedifferencedata.

We positthatthedifferencesof thedatapointsfrom the
polynomialrepresentationarisefrom effectsthat arevary-
ing in their locality. Specificto eachnodeareerrorsdue
to intrinsic sensornoiseandmicro-metvariationsat scales
finer than the spatialsamplingrate of the sensorgrid. In
general,variationsoccuracrossscales,so that somevaria-
tionsareglobal,causingnetwork-widecommondifferences
dueto the low-orderfit. In betweenaredynamicsthatare
local to physicalneighborhoodsof sensornodes. For this
reason,eachnode’scoefficientsrepresentalocalview of the
global scene.This view’s validity normally increaseswith
proximity to its location;on theotherhand,two nodesmay
bein similar localenvironments(e.g.,shady),but separated
by multiple hops.Hencecorrelationmaynot bea function
of distance(either physicalor numberof hops),and this
shouldbe accommodatedin a spatio-temporalsourcecod-
ing algorithm.

With this in mind, we turn to thespatialportionof our
codingscheme.In our scheme,terminalnodes—thosethat
needonly senseandtransmittheir data,anddon’t needto
route data from other nodes—donot executethis phase.
However, nodesthatroutein additionto sensingshould use
their computationalpower to reducethenumberof bits re-



quired to forward a packagethat includesits dataaswell
asthatof farther-flung (from thegateway) nodesthat route
throughit to the gateway. We invert first-glanceintuition
andreferto thesenodesasits code servers.

Eachrouter nodefirst usesthe sametemporalcoding
algorithm as usedby terminal nodes,with the additional
stepof computingthenumberof bits requiredto represent
its data. Together, thesetwo stepscompriseits view of
thesceneindependentof othernodesanda measureof the
communicationcostof that view. The nodethenfinds the
numberof bits requiredto representits dataasdifferences
from thedataof eachof its codeservers.(This requiresde-
codingof its codeservers’ data,which we discussshortly.)
It then simply choosesthe representationthat minimizes
the numberof additionalbits requiredto representits data
alongwith thedataof its codeservers. Normally, thenode
will often selectone of the serversasa reference;on the
otherhand,if therearesignificantspatialvariations,it can
fall back to its independentview. In this way, the algo-
rithm adaptsto spatialcorrelationor decorrelationon aper-
realizationbasis.

Implementationof the algorithmfor a routernodecan
bedescribedby anexample.Supposethenodeundercon-
siderationis a routernode  , �"!# �!#$ , in a lineararray
of $ sensorswherenode1 is the gateway. Then,its code
serversconsistof all nodes%'&( fartheraway from the
gateway. The decodingof its codeservers’ datais recur-
sive: node 
� *)+�,� ’s datamay be encodedas differences
from node  -)#. , etc. However, the recursive decodingis
straightforward,andthecompletecodingalgorithmcanbe
accomplishedwell within the boundsdictatedby the com-
munication/computationenergy costratio.

We mentionedearlierhow per-realizationsimilarity be-
tweentime seriesmaynot bea functionof eitherthephysi-
caldistanceor thenumberof hops.Within thelimits of net-
work routing,thealgorithmallows a nodeto referenceany
of its farther-flung(i.e.,outboundfrom thegatewaynodes),
thusallowing nodesto exploit pocketsof similarity in data
from codeserversthatmaybephysicallydispersed.

5. EXPERIMENTAL RESULTS

To evaluateour algorithm,we usedarchiveddataacquired
using conventionaldataloggersby the NAU Piñon Ecol-
ogy ResearchGroup (http://pinyon.bio.nau.edu) at Sunset
CraterNationalMonumentapproximately20 miles north-
eastof Flagstaff, AZ. The ecosystemis piñon pine (pinus
edulis) and juniper (juniperusmonosperma)woodland,at
approximately6000ft elevation. Someof the piñon pines
havebeenattackedby scaleandmothinsects.Thescalecan
causesignificantdefoliation,andthemothchangesthetree
structure;bothof theseeffectsmaycausechangesin thesoil
temperature.This, in turn,mayeffect soil moisturecontent

andnutrientcycling processes.
As describedearlier, no coding implies that the num-

berof bits to be transmittedandreceivedincreasesat least
linearly with proximity (in numberof hops) to the gate-
way. If we assumefor themomentthatthetimeseriesfrom
all sensorsareidentical,thenthe terminalnodeis theonly
codeserver, andaperformanceupperboundfor any spatio-
temporalcodingschemewouldbeaconstantnumberof bits
equalto theentropy of theterminalnode(thisequalityis ex-
tremelycrudegiventhenon-probabilisticviewpoint driven
by the shorttime serieslength). In practice,this implies a
slight linearincreasewith numberof hopsdueto theneces-
saryoverheadrequiredfor eachnodeto pointto theterminal
node’s information.

From the SunsetCraterdatawe selectedsoil tempera-
turetime seriesfrom sensorsscatteredapproximately15 m
apartandabout5 cm below thesurface;theraw time series
showing the diurnal variation over a threeday period are
plottedin Figure1. We chosea relatively linearportionof
theseriesover anapproximately��. hourperiodfor further
studyasseenin Figure2. Compressionresultsfor theSun-
setCraterdataareshown in Figure3,wherewehaveplotted
thecumulativenumberof bits thatarerequiredto betrans-
mittedateachsensorasafunctionof thenumberof hops.In
this experiment,weusedfirst-ordermodels.Becauseof the
distancesbetweenthesensorsandresultingdissimilarityof
thetime series,thegainsaremodest.In fact,in this dataset
eachsensorchoosesits own polynomialmodelbecauseit
providesbettercompressionthanusingany other’s model.
HenceFigure3 providesanindicationof thetemporalcod-
ing gainthatcanbeachieved.

In orderto estimatethe potentialspatial-temporalcod-
ing gain, we createda syntheticdataset from the Sunset
Craterdataby defining virtual nodeswhosedatawas in-
terpolatedbetweenadjacentnodesin theactualdata.Then
wemodeledsensor-specificnoiseandmicro-meteorological
variationsby addinga small Gaussian-distributedrandom
variateto eachinterpolatedvalue. This datais shown in
Figure 4. In this case,a spatialcodinggain occurssince
nodeschoosecodeserversotherthanthemselves. As seen
in Figure5, thecombinedspatio-temporalcodinggainis ap-
proximately33%,ascomparedto 20%for datain Figures2
and 3.

6. CONCLUSION

Thispaperconsidersthesourcecodingof spatio-temporally
correlatedenvironmentalsensordatafor transmissionto a
sensornetwork gateway. In thisapplication,timelinesscon-
straintsoftenimply thereportingof shorttimeseries,limit-
ing the effectivenessof probabilisticanddictionary-based
approaches.On the other hand, the energy efficiency of
computationrelative to thatof wirelesscommunicationar-
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Figure1. Raw sensordata;soil temperatureasa functionof
time for six locationsover a threedayperiod.

guesstrongly for approachesthat canprovide somecom-
pression.This paperproposesa losslesscodingtechnique
thatexploitsthejoint sensing/routingdutiesof sensornodes.
It is model-basedin the temporaldomain,usinga simple
polynomialapproximation.It is adaptive in thespatialdo-
mainin thatanodecanconsiderany of its codeservers(in-
cludingitself) andchoosetheonethatyieldsthebestcom-
pressionfor its time series. Our resultsindicate that the
algorithmyieldsreasonableresultsthatimproveasthedata
similarity increases.
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